Ultrathin, Conformally Synthesized Organoxiloxane Membrane for Precision Organic Solvent Nanofiltration
J. Choi, K. Choi, Y. Kwon, D. Kim, Y. Yoo, S. G. Im*, D.-Y. Koh*
Nature Communications volume 15, Article number: 2800 (2024)
Promising advances in membrane technology can lead to energy-saving and eco-friendly solutions in industrial sectors. This work demonstrates a highly selective membrane with ultrathin and highly interconnected organosiloxane polymer nanolayers by initiated chemical vapor deposition to effectively separate solutes within the molecular weight range of 150–300 g mol−1. We optimize the poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane) membrane by adjusting both the thickness of the selective layer and the pore sizes of its support membranes. Notably, the 29 nm selective layer imparts a uniformly narrow molecular sieving property, providing a record-high solute-solute selectivity of 39.88 for different-sized solutes. Furthermore, a solute-solute selectivity of 11.04 was demonstrated using the real-world active pharmaceutical ingredient mixture of Acyclovir and Valacyclovir, key components for Herpes virus treatment, despite their molecular weight difference of less than 100 g mol−1. The highly interconnected membrane is expected to meet rigorous requirements for high-standard active pharmaceutical ingredient separation.